

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

ELC301 Electronic Engineering

> Lecture #4 Transistors

Instructor: Dr. Moataz Elsherbini

Bipolar Junction Transistor

BIPOLAR JUNCTION TRANSISTOR (BJT) STRUCTURE

Transistor Packages

Base

(a) Dual metal can. Emitters are closest to tab.

Emitter 3 5 Emitter

Base 2 Emitter

3 Collector

(c) TO-18. Emitter is closest to tab.

(b) SOT-23

(b) Quad dual in-line (DIP) and quad

flat-pack. Dot indicates pin 1.

(c) Quad small outline (SO) package for surface-mount technology

(b) TO-225

(c) D-Pack

Basic Operation

- Transistor Currents

•

BJT Configurations

Configuration	Input	Output	gain
Common Emitter	Base	Collector	-ve gain
Common Base	Emitter	Collector	+ve gain
Common Collector	Base	Emitter	Unity gain

- Base terminal can't be output
- Collector terminal can't be input

BJT Parameters

$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}}$$

• The dc current gain of a transistor is the ratio of the dc collector current (I_C) to the dc base current (I_B) and is designated dc **beta** (β_{DC}).

$$h_{\rm FE} = \beta_{\rm DC}$$

- Typical values of β_{DC} range from less than 20 to 200 or higher.
- β_{DC} is usually designated as an equivalent hybrid (h) parameter, h_{FE} , on transistor datasheets.

$$\alpha_{\rm DC} = \frac{I_{\rm C}}{I_{\rm E}}$$

• The ratio of the dc collector current (I_C) to the dc emitter current (I_E) is the dc alpha (a_{DC}).

Transistor DC Model

- IB: dc base current
- IE: dc emitter current
- $I_{\rm C}$: dc collector current

 $V_{\rm BE}$: dc voltage at base with respect to emitter V_{CB} : dc voltage at collector with respect to base V_{CE} : dc voltage at collector with respect to emitter

 $V_{\rm BE}\,\cong\,0.7\,{
m V}$

$$V_{R_{B}} = V_{BB} - V_{BE}$$

$$V_{R_{B}} = I_{B}R_{B}$$

$$I_{B}R_{B} = V_{BB} - V_{BE}$$

$$I_{B} = \frac{V_{BB} - V_{BE}}{R_{B}}$$

$$V_{CB} = \frac{V_{CC}}{I_{C}}$$

$$V_{CE} = V_{CC}$$

$$V_{CE} = V_{CC}$$

$$I_{C} = \beta I_{B}$$

$$V_{CE} = V_{CC} - V_{CE}$$

$$V_{CE} = V_{CC} - V_{R_C}$$
$$V_{R_C} = I_C R_C$$
$$I_c = \beta I_B$$
$$V_{CE} = V_{CC} - I_C R_C$$
$$V_{CB} = V_{CE} - V_{BE}$$

Collector characteristic curves

BJT as an Amplifier

BJT as a Switch

Transistor Bias Circuit

VOLTAGE-DIVIDER BIAS

$$V_{\rm B} \cong \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC}$$

$$v_{\rm E} = v_{\rm B} = v_{\rm BE}$$

 $I_{\rm C} \cong I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}}$

17

V

1Z

$$V_{\rm C} = V_{\rm CC} - I_{\rm C} R_{\rm C}$$

 $V_{\rm CE} = V_{\rm C} - V_{\rm E}$

C.E. AC Analysis

• DC Analysis: 8.20 V_{DC} Capacitors \rightarrow Open Circuit V_{CC} +12 V (See before) $\beta_{DC} = 150$ $R_{\rm C}$ $\beta_{ac} = 160$ C_3 $\begin{cases} R_1 \\ 22 k\Omega \end{cases}$ 2.83 VD $1 \mu F$ Л - 2.13 V_{DC} • AC Analysis: 1 *u*F $\begin{cases} R_2 \\ 6.8 \text{ k}\Omega \end{cases}$ Capacitors \rightarrow short Circuit $R_{\rm E}$ 10 µF DC supply \rightarrow ground

AC r-parameter Model

Input resistance

$$R_{in(base)} = \beta_{ac} r'_{e}$$

Output resistance $R_{out} \cong R_{\rm C}$

Voltage gain

 $A_v = \frac{R_{\rm C}}{r'_e}$

Current gain

 $A_i = \frac{I_c}{I_s} = -A\nu \frac{Zin}{Rc}$

Power gain

 $A_p = A'_v A_i$

 $\beta_{DC} = \beta_{ac} = 150$ for Q_1 and Q_2

Project Audio amplifier

TDA 7052 1uF capacitor Speaker 4 -32 ohm Audio jack (AUX) mono Battery 9V Wires board

